

Practice Test - 3

Class - X

(For students moving to Class XI) (JEE & NEET Aspirants)

SUBJECTS Science - Physics - Chemistry - Biology **Mathematics Mental Ability** For More infomation in y Call us: +91-87807 55750 E-Mail us: isat@infinityscholarshub.com

ISAT Practice Test

3

Time: 2 Hour

Maximum Marks: 336

CLASS-10

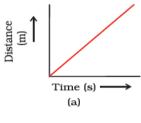
General	T-00	
73 13 21		 tions

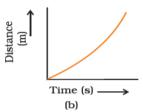
$\overline{}$	deficial first uctions
1.	There are a total of 84 multiple choice questions.
2.	This test contains 5 section (Physics, Chemistry, Biology, Mathematics & Mental Ability).
3.	Marking Scheme:
	+4 Correct Response, -1 Incorrect Response, 0 No response
	DATE: / /

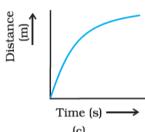
DAT	E:/
NAME:	

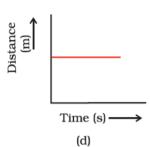
PHYSICS

- (1) In case of negative work the angle between the force and displacement is

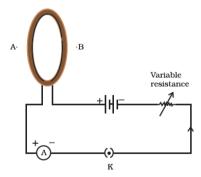

 (a) 0° (b) 45° (c) 90° (d) 180°


 (2) In SONAR, we use


 (a) ultrasonic waves
 (b) infrasonic waves
 (c) radio waves
 (d) audible sound waves
- (3) The gravitational force between two objects is F. If masses of both objects are halved without changing distance between them, then the gravitational force would become
 - (a) F/4
- (b) F/2
- (c) F
- (d) 2 F
- An object is put one by one in three liquids having different densities. The object floats with $\frac{1}{9}$, $\frac{2}{11}$ and $\frac{3}{7}$ parts of their volumes outside the liquid surface in liquids of densities d_1 , d_2 and d_3 respectively. Which of the following statement is correct? (a) $d_1 > d_2 > d_3$ (b) $d_1 > d_2 < d_3$ (c) $d_1 < d_2 > d_3$ (d) $d_1 < d_2 < d_3$
- (5) An object weighs 10 N in air. When immersed fully in water, it weighs only 8 N. The weight of the liquid displaced by the object will be
 - (a) 2 N
- (b) 8 N
- (c) 10 N
- (d) 12 N

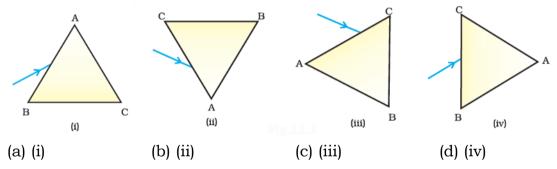

- (6) A goalkeeper in a game of football pulls his hands backwards after holding the ball shot at the goal. This enables the goal keeper to
 - (a) exert larger force on the ball
 - (b) reduce the force exerted by the ball on hands
 - (c) increase the rate of change of momentum
 - (d) decrease the rate of change of momentum
- (7) The numerical ratio of displacement to distance for a moving object is
 - (a) always less than 1

- (b) always equal to 1
- (c) always more than 1
- (d) equal or less than 1
- (8) Which of the following figures (Fig.) represents uniform motion of a moving object correctly?



- (9) Which one of the following forms of energy leads to least environmental pollution in the process of its harnessing and utilisation?
 - (a) Nuclear energy

(b) Thermal energy


(c) Solar energy

- (d) Geothermal energy
- (10) A circular loop placed in a plane perpendicular to the plane of paper carries a current when the key is ON. The current as seen from points A and B (in the plane of paper and on the axis of the coil) is anti clockwise and clockwise respectively. The magnetic field lines point from B to A. The N-pole of the resultant magnet is on the face close to

- (a) A
- (b) B
- (c) A if the current is small, and B if the current is large
- (d) B if the current is small and A if the current is large

- (11) What happens to current in short circuit?
 - (a) reduces substantially
 - (b) does not change
 - (c) increases heavily
 - (d) vary continuously
- (12) A 10 mm long awl pin is placed vertically in front of a concave mirror. A 5 mm long image of the awl pin is formed at 30 cm in front of the mirror. The focal length of this mirror is
 - (a) -30 cm
- (b) -20 cm
- (c) 40 cm
- (d) 60 cm
- (13) Which of the following statements is true?
 - (a) A convex lens has 4 dioptre power having a focal length 0.25 m
 - (b) A convex lens has -4 dioptre power having a focal length 0.25 m
 - (c) A concave lens has 4 dioptre power having a focal length 0.25 m
 - (d) A concave lens has -4 dioptre power having a focal length 0.25 m
- (14) A prism ABC (with BC as base) is placed in different orientations. A narrow beam of white light is incident on the prism as shown in Figure. In which of the following cases, after dispersion, the third colour from the top corresponds to the colour of the sky?

CHEMISTRY

- (15) The following reaction is an example of a $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$
 - (i) displacement reaction
 - (ii) combination reaction
 - (iii) redox reaction
 - (iv) neutralisation reaction
 - (a) (i) and (iv)

(b) (ii) and (iii)

(c) (i) and (iii)

- (d) (iii) and (iv)
- (16) Calcium phosphate is present in tooth enamel. Its nature is
 - (a) basic

(b) acidic

(c) neutral

- (d) amphoteric
- (17) Which of the following gives the correct increasing order of acidic strength?
 - (a) Water <Acetic acid <Hydrochloric acid
 - (b) Water < Hydrochloric acid < Acetic acid
 - (c) Acetic acid <Water <Hydrochloric acid
 - (d) Hydrochloric acid <Water <Acetic acid

(18)	Sodium hydrogencarbonate when		id evolves a gas. Which of the						
	following statements are true abo	ut the gas evolved?							
	(i) It turns lime water milky								
	(ii) It extinguishes a burning splin								
	(iii) It dissolves in a solution of so	dium hydroxide							
	(iv) It has a pungent odour	••• / > /•• /•• 1 /•	\						
	(a) (i) and (ii) (b) (i), (ii) and (i								
(19)	Which of the following phenomen	a occur, when a sm	all amount of acid is added to						
	water?								
	(i) Ionisation								
	(ii) Neutralisation								
	(iii) Dilution								
	(iv) Salt formation	4	(4) (1)						
		(c) (ii) and (iii)	(d) (ii) and (iv)						
(20)	"Is malleable and ductile". This be								
	· · · —	d (c) a non-metal	(d) a solution						
(21)	The process of respiration is:								
	(a) an oxidation reaction which is								
	(b) a reduction reaction which is								
	(c) a combination reaction which								
	(d) an oxidation reaction which is								
(22)	A form of matter has no fixed sha	ape but it has a fixe	ed volume. An example of this						
	form of matter is:								
	()	(c) carbon steel	` '						
(23)	The evaporation of water increase		ig conditions:						
	(a) increase in temperature, decre								
	(b) increase in surface area, decre	•							
	(c) increase in surface area, rise in	=							
	(d) increase in temperature, incre								
(24)	When ice melts, cooling is observed		the following:						
	(a) Density of ice is less than that	of water							
	(b) Ice floats over water	1.							
	(c) Ice absorbs heat from the surroundings								
(05)	(d) Melting point of ice is 0°	. 11 1							
(25)	The removal of oxygen from a sub		(1)						
(06)	(a) oxidation (b) corrosion	(c) reduction	(d) rancidity						
(26)	Wasp sting contains:	/1 \ '1' 1'	• •						
	(a) a sugar solution	(b) an acidic liqu							
	(c) a salt solution	(d) an alkaline li	quid						
(27)	Tyndall Effect in colloids is due to)							
	(a) dispersion of light								
	(b) merging of light rays								
	(c) scattering of light								
	(d) convergence of light ray								
			Page No: 4						

(28)	A solution reacts with marble chips to produce a gas which turns lime water milky The solution contains:										
	(a) Na ₂ SO ₄	(b) CaSO ₄		(c) H ₂ SO ₄		(d) K ₂ SO	4				
			BIC	DLOGY							
(29)	In photosynthe (a) CO ₂ is redu (b) CO ₂ is oxidi (c) CO ₂ and H ₂ (d) CO ₂ & H ₂ O	ced while H ₂ C zed white H ₂ C O are oxidized are reduced) reduce l	ed							
(30)	In which form (a) Sucrose	is food transp (b) Fructo:		plants (c) Glucos	e	(d) Lacto	ise				
(31)	Growth in a pla (a) More anabo (b) More catabo (c) Equal amou (d) More energy	ant is because lism than cata olism than and ant of anabolis	e of abolism abolism sm and o	,		(a) Bacto					
(32)	Special excreto (a) Earthworm		_	: (c) Man		(d) Insec	ts				
(33)	In which part (•			-	1 : 4 4	•			
(34)	(a) Stomach A few drops turned blue-bl (a) complex pro (c) fats	ack in colour.	olution	were ad	ded to t rice wa protein	rice wa ater conta	ater. 7		olution		
(35)	Dwarfism resu (a) Excess secr (b) Less secreti (c) Less secreti (d) Excess secr	etion of thyro on of growth l on of adrenali	normone ne								
(36)	The substan from plants is (a) auxin	ce that tri due to (b) gibbere		the fall (c) abscisi			eaves	and	fruits		
(37)	Select the mis- (a) Adrenaline (c) Estrogen: (matched pair : Pituitary gla		(b) Testos (d) Thyrox	terone: ′	Testes					
(38)	The ability of in Plasmodium (a) budding (b) reduction d (c) binary fission (d) multiple fish	of a cell to is called ivision on	o divid	. ,	-	_		reprod	luction		
							7	Dawa N	T F		

(39) The number of chromosomes in parents and offsprings of a particular species remains constant due to
(a) doubling of chromosomes after zygote formation
(b) halving of chromosomes during gamete formation
(c) doubling of chromosomes after gamete formation
(d) halving of chromosomes after gamete formation
(40) In Figure below, the parts A, B and C are sequentially

- (a) cotyledon, plumule and radicle (b) plumule, radicle and cotyledon
- (c) plumule, cotyledon and radicle (d) radicle, cotyledon and plumule
- (41) In Rhizopus, tubular thread-like structures bearing sporangia at their tips are called
 - (a) filaments (b) hyphae
 - (c) rhizoids (d) roots
- (42) The white matter in a bird's dropping is
 - (a) CaCO₃ (b) CaSO₄ (c) Uric acid (d) Urea

MATHEMATICS

- (43) For some integer m, every even integer is of the form
 - (a) m (b) m + 1
- (c) 2m
- (d) 2m + 1
- (44) The product of a non-zero rational and an irrational number is
 - (a) always irrational

- (b) always rational
- (c) rational or irrational
- (d) one
- (45) If the zeroes of the quadratic polynomial $x^2 + (a + 1) x + b$ and 2 and -3, then (a) a = -7, b = -1 (b) a = 5, b = -1 (c) a = 2, b = -6 (d) a = 0, b = -6
 - The number of polynomials having zeroes as -2 and 5 is
 - (a) 1 (b) 2
- (c) 3
- (d) more than 3
- (47) The pair of equations x + 2y + 5 = 0 and -3x + 6y + 1 = 0 have
 - (a) a unique solution

- (b) exactly two solutions
- (c) infinitely many solutions
- (d) no solution
- (48) If a pair of linear equations is consistent, then the lines will be
 - (a) parallel

(46)

- (b) always coincident
- (c) intersecting or coincident
- (d) always intersecting
- (49) Which of the following is not a quadratic equation?
 - (a) $2(x-1)^2 = 4x^2 2x + 1$
- (b) $2x x^2 = x^2 + 5$
- (c) $(\sqrt{2}x + \sqrt{3})^2 + x^2 = 3x^2 5x$
- (d) $(x^2 + 2x)^2 = x^4 + 3 + 4x^3$
- **(50)** The quadratic equation $2x^2 \sqrt{5}x + 1 = 0$ has
 - (a) two distinct real roots
- (b) two equal real roots

(c) no real roots

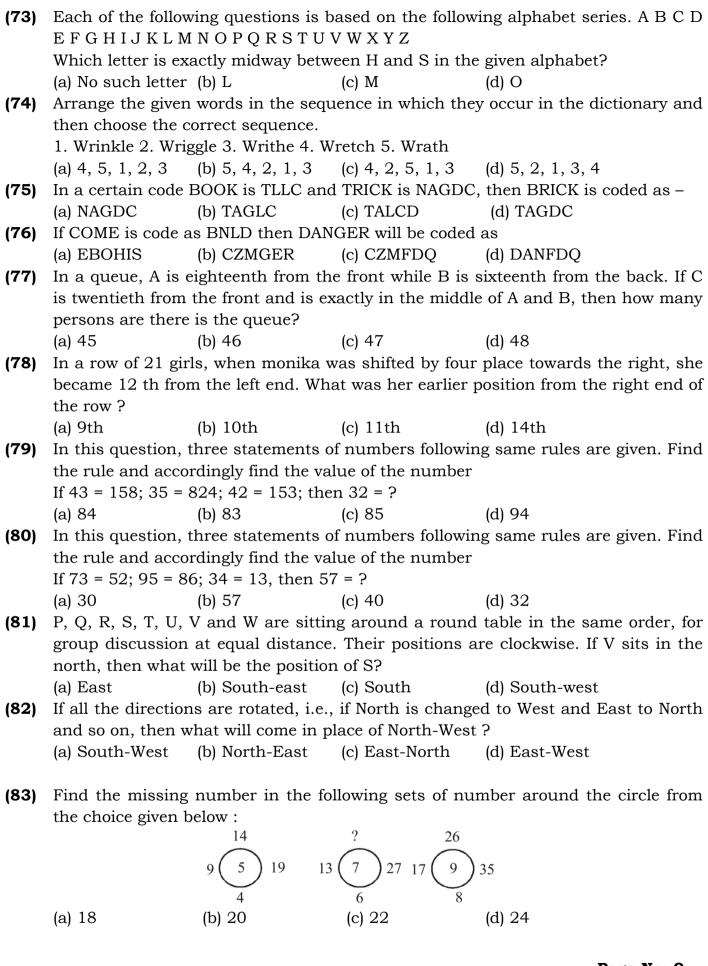
(d) more than 2 real roots

(51)	In an AP, if a	= 3.5	5, d = 0	, n = 10	1, then	a _n will be	e		
	(a) 0		` '		` '	03.5		(d) 104.5	
(52)	The 21st term								
(52)	(a) 17		(b) 137		` '	.43 or to AD		(d) -143	na is
(53)	not true?	JUF 8	anu AA	DC IS II	ot siiiiii		Er, III	en which of the followi	ng is
	(a) BC \cdot EF =	AC · :	FD		(b) A	AB · EF =	= AC ·]	DE	
	(c) BC \cdot DE =	AB ·	EF			BC · DE =			
(54)	In Fig., two li	ne se	egment	s AC an	d BD in	tersect e	each ot	ther at point P such tha	at PA
			n, PC =	2.5 cm	PD = 5	$5 \text{ cm}, \angle P$	APB =	50° and \angle CDP = 30° . The state of the state o	ìhen,
	∠PBA is equa	ıl to							
				A			4n		
					o_{cm}	P 5cm	οη D		
				,	5003				
					B 3cm	2.5cm	√ C		
	(a) 50°		(b) 200		(a) <i>G</i>	.00		(4) 1000	
(55)			(b) 30° triang		c) 6) ertices			(d) 100° d (3, 0) is	
(00)	(a) 5		(b) 12	ic with		1		(d) $7 + \sqrt{5}$	
.=	` '		` '	. 6.1				` '	D/ 0
(56)	If $P\left(\frac{\pi}{3}, 4\right)$ is t	he m	ııd-poır	it of the	line seg	ment joi	ınıng t	he points Q(-6, 5) and	R(-2,
	3), then the v	alue	of a is						
	(a) -4		(b) -12		()	.2		(d) -6	
(57)	The value of ((sin 4	·5° + co	s 45°) is		<i>[</i> -			
	(a) $\frac{1}{\sqrt{2}}$		(b) $\sqrt{2}$		(c) -	$\frac{\sqrt{3}}{2}$		(d) 1	
(58)	$\sqrt{2}$ If $\sin\theta - \cos\theta$	= 0 1	then th	e walije		4) ie		
(38)				c varue				1	
	(a) 1		(b) $\frac{3}{4}$		(c) $\frac{1}{2}$	2		(d) $\frac{1}{4}$	
(59)	Consider the	follov	wing fre	equency	distribu	ition:	-		
	Class	0–5	6–11	12–17	18–23	24–29	_		
	Frequency	13	10	15	8	11]		

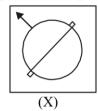
The upper limit of the median class is

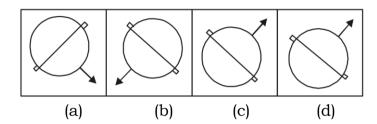
(a) 17 (b) 17.5 (c) 18 (d) 18.5 (60) In the formula $\bar{x} = a + \frac{\sum f_i d_i}{\sum f_i}$, for finding the mean of grouped data d_i 's are

deviations from a of


- (a) lower limits of the classes
- (b) upper limits of the classes
- (c) mid points of the classes
- (d) frequencies of the class marks

(61)	The probability of	of getting a bad eg	g in a lot of 400 is	s 0.035. The number of bad
	eggs in the lot is			
	(a) 7	(b) 14	(c) 21	(d) 28
(62)	One ticket is dra	wn at random fro	m a bag containin	g tickets numbered 1 to 40.
	The probability th	nat the selected tic	ket has a number v	which is a multiple of 5 is
	(a) $\frac{1}{5}$	(b) $\frac{3}{5}$	(a) 4	(d) $\frac{1}{3}$
	$\frac{(a)}{5}$	$\frac{(b)}{5}$	(c) $\frac{4}{5}$	$(\alpha) \frac{1}{3}$
(63)	If $\sqrt{2} = 1.4142$, the	en $\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}$ is equal		
			(c) 0.4142	(d) 0 1718
(64)	` '	` '	` '	s in the negative direction of
(0+)	y-axis is	iics oii y-axis at a	distance of 5 diffe	s in the negative direction of
	·	(b) (5 0)	(a) (O 5)	(4) (5 0)
16 E \			(c) $(0, -5)$	(d) (–3, 0)
(65)		form $(a, -a)$ always		(d) x + y = 0
	(a) x = a	(b) $y = -a$	(c) $y = x$	(a) $x + y = 0$
(66)	Zero of the zero p	olynomial is	/1 \ 4	
	(a) 0		(b) 1	
	(c) Any real numb		(d) Not defined	
(67)	In triangles ABC	and DEF, AB =	FD and $\angle A = \angle I$	D. The two triangles will be
	congruent by SAS			
	(a) $BC = EF$	(b) $AC = DE$	(c) $AC = EF$	(d) $BC = DE$
(68)	ABCD is a rhomb	ous such that ∠AC	B = 40° . Then \angle AD	B is
	(a) 40°	(b) 45°	(c) 50°	(d) 60°
(69)	In Fig., if ∠OAB =	= 40°, then ∠ACB is	s equal to:	
			C	
		A	40° B	
	(a) 50°	(b) 40°	(c) 60°	(d) 70°
(70)		anks of dimension	s (4 m \times 50 cm \times 2	0 cm) that can be stored in a
\ - /	-	long, 12 m wide a	•	,
	(a) 1900	(b) 1920	(c) 1800	(d) 1840
	(4) 1000	(~) 1040	(5) 1000	(4) 10 10
		MENTA	AL ABILITY	
(71)	2, 4, 4, 8, 16, 16,	256, ?	<u>—</u>	
	(a) 64	(b) 36	(c) 180	(d) 32
			• •	•


(72) 19, 4, 14, 7, 10, 11, 7, ?


(a) 16 (b) 15 (c) 17

(d) 23

(84) Choose the correct mirror-image of the Fig. (X) from amongst the four alternatives (a), (b), (c) and (d) given along with it.

CONGRATULATIONS ISAT 2022 Toppers

Adya Sharma

krisha Kothiya

Kavya Aga

Vandit Kotecha

For More information: - +91-87807 55750 E-Mail us: - isat@infinityscholarshub.com

Hiya shah

Rajpath Complex, Vasna-Bhayli Main Rd, Near Bright Day School, Opp Essar Petrol Pump

CLASS-10-ISAT-PRACTISE TEST-3-ANSWER KEY

1.	(d)	2.	(a)	3.	(a)	4.	(d)	5.	(a)	6.	(b)	7.	(d)	8.	(a)
9.	(c)	10.	(a)	11.	(d)	12.	(b)	13.	(a)	14.	(b)	15.	(c)	16.	(a)
17.	(a)	18.	(b)	19.	(d)	20.	(a)	21.	(d)	22.	(b)	23.	(c)	24.	(c)
25.	(c)	26.	(d)	27.	(c)	28.	(c)	29.	(a)	30.	(a)	31.	(a)	32.	(b)
33.	(d)	34.	(d)	35.	(b)	36.	(c)	37.	(a)	38.	(d)	39.	(b)	40.	(c)
41.	(b)	42.	(c)	43.	(c)	44.	(a)	45.	(d)	46.	(d)	47.	(a)	48.	(c)
49.	(c)	50.	(c)	51.	(b)	52.	(b)	53.	(c)	54.	(d)	55.	(b)	56.	(b)
57.	(b)	58.	(c)	59.	(b)	60.	(c)	61.	(b)	62.	(a)	63.	(c)	64.	(c)
65.	(d)	66.	(c)	67.	(b)	68.	(c)	69.	(a)	70.	(b)	71.	(d)	72.	(a)
73.	(a)	74.	(b)	75 .	(d)	76.	(c)	77.	(c)	78.	(d)	79.	(b)	80.	(d)
81.	(d)	82.	(a)	83.	(b)	84	(c)								