

ISAT Practice Test

Time: 2 Hours Maximum Marks: 336

CLASS-10

General Instructions

- **1.** There are $\mathbf{84}$ questions in this question paper with internal choice.
- **2.** Each test will have 5 sections.
- **3.** Physics, Chemistry, Biology, Mathematics & Mental Ability.
- 4. Each Question will be **MCQ-Type** (Multiple Choice Question with One Option Correct.)
- 5. Marking Scheme:
 - +4 Correct Response, -1 Incorrect Response, 0 No response

DATE: ____/___/____

NAME: _____

PHYSICS

In case of negative work the angle between the force and displacement is (1) (a) 0° (c) 90° (d) 180° (b) 45° (2) In SONAR, we use (a) ultrasonic waves (b) infrasonic waves (c) radio waves (d) audible sound waves (3) The gravitational force between two objects is F. If masses of both objects are halved without changing distance between them, then the gravitational force would become (a) F/4 (b) F/2(c) F (d) 2 F (4) An object is put one by one in three liquids having different densities. The object

floats with $\frac{1}{9}$, $\frac{2}{11}$ and $\frac{3}{7}$ parts of their volumes outside the liquid surface in liquids of densities d_1 , d_2 and d_3 respectively. Which of the following statement is correct?

(a) $d_1 > d_2 > d_3$ (b) $d_1 > d_2 < d_3$ (c) $d_1 < d_2 > d_3$ (d) $d_1 < d_2 < d_3$

Page | 1

(5) An object weighs 10 N in air. When immersed fully in water, it weighs only 8 N. The weight of the liquid displaced by the object will be

(a) 2 N (b) 8 N (c) 10 N (d) 12 N

- (6) A goalkeeper in a game of football pulls his hands backwards after holding the ball shot at the goal. This enables the goal keeper to
 - (a) exert larger force on the ball
 - (b) reduce the force exerted by the ball on hands
 - (c) increase the rate of change of momentum
 - (d) decrease the rate of change of momentum
- (7) The numerical ratio of displacement to distance for a moving object is
 - (a) always less than 1 (b) always equal to 1
 - (c) always more than 1 (d) equal or less than 1
- (8) Which of the following figures (Fig.) represents uniform motion of a moving object correctly?

- (9) Which one of the following forms of energy leads to least environmental pollution in the process of its harnessing and utilisation?
 - (a) Nuclear energy

(b) Thermal energy

(c) Solar energy

- (d) Geothermal energy
- (10) A circular loop placed in a plane perpendicular to the plane of paper carries a current when the key is ON. The current as seen from points A and B (in the plane of paper and on the axis of the coil) is anti clockwise and clockwise respectively. The magnetic field lines point from B to A. The N-pole of the resultant magnet is on the face close to

Page | 2

- (a) A
- (b) B
- (c) A if the current is small, and B if the current is large
- (d) B if the current is small and A if the current is large
- (11) Choose the incorrect statement

(a) Fleming's right-hand rule is a simple rule to know the direction of induced current

(b) The right-hand thumb rule is used to find the direction of magnetic fields due to current carrying conductors

(c) The difference between the direct and alternating currents is that the direct current always flows in one direction, whereas the alternating current reverses its direction periodically

(d) In India, the AC changes direction after every $\frac{1}{50}$ second

(12) A 10 mm long awl pin is placed vertically in front of a concave mirror. A 5 mm long image of the awl pin is formed at 30 cm in front of the mirror. The focal length of this mirror is

(a) -30 cm (b) -20 cm (c) -40 cm (d) -60 cm

- (13) Which of the following statements is true?
 - (a) A convex lens has 4 dioptre power having a focal length 0.25 m
 - (b) A convex lens has -4 dioptre power having a focal length 0.25 m
 - (c) A concave lens has 4 dioptre power having a focal length 0.25 m
 - (d) A concave lens has -4 dioptre power having a focal length 0.25 m
- (14) A prism ABC (with BC as base) is placed in different orientations. A narrow beam of white light is incident on the prism as shown in Figure. In which of the following cases, after dispersion, the third colour from the top corresponds to the colour of the sky?

CHEMISTRY

(15) The following reaction is an example of a 4NH₃(g) + 5O₂(g) → 4NO(g) + 6H₂O(g)
 (i) displacement reaction

- (ii) combination reaction
- (iii) redox reaction
- (iv) neutralisation reaction
- (a) (i) and (iv) (b) (ii) and (ii
 - nd (iv) (b) (ii) and (iii) (c) (i) and (iii) (d) (iii) and (iv) **Page**

Page | 3

- (16) Calcium phosphate is present in tooth enamel. Its nature is (b) acidic (a) basic (c) neutral (d) amphoteric (17) Which of the following gives the correct increasing order of acidic strength? (a) Water <Acetic acid <Hydrochloric acid (b) Water <Hydrochloric acid <Acetic acid (c) Acetic acid <Water <Hydrochloric acid (d) Hydrochloric acid <Water <Acetic acid Sodium hydrogencarbonate when added to acetic acid evolves a gas. Which of the (18)following statements are true about the gas evolved? (i) It turns lime water milky (ii) It extinguishes a burning splinter (iii) It dissolves in a solution of sodium hydroxide (iv) It has a pungent odour (a) (i) and (ii) (b) (i), (ii) and (iii) (c) (ii), (iii) and (iv) (d) (i) and (iv) (19) Which of the following phenomena occur, when a small amount of acid is added to water? (i) Ionisation (ii) Neutralisation (iii) Dilution (iv) Salt formation (a) (i) and (ii) (b) (i) and (iii) (c) (ii) and (iii) (d) (ii) and (iv) (20) "Is malleable and ductile". This best describes: (a) a metal (b) a compound (c) a non-metal (d) a solution (21) The process of respiration is: (a) an oxidation reaction which is endothermic (b) a reduction reaction which is exothermic (c) a combination reaction which is endothermic (d) an oxidation reaction which is exothermic (22) A form of matter has no fixed shape but it has a fixed volume. An example of this form of matter is: (c) carbon steel (d) carbon dioxide (a) krypton (b) kerosene (23) The evaporation of water increases under the following conditions: (a) increase in temperature, decrease in surface area (b) increase in surface area, decrease in temperature (c) increase in surface area, rise in temperature (d) increase in temperature, increase in surface area, addition of common salt When ice melts, cooling is observed because of one of the following: (24) (a) Density of ice is less than that of water (b) Ice floats over water (c) Ice absorbs heat from the surroundings (d) Melting point of ice is 0° The removal of oxygen from a substance is called: (25) (c) reduction (a) oxidation (b) corrosion (d) rancidity Page | 4
 - 201, Rajpath Complex, Vasna Bhayli Main Rd, Near Bright Day School, Opp Essar Petrol Pump, Vadodara - 391 410 | 8780755750, 8780753078 www.infinityscholarshub.com

(26) Wasp sting contains: (a) a sugar solution (b) an acidic liquid (d) an alkaline liquid (c) a salt solution (27)Tyndall Effect in colloids is due to (b) merging of light rays (a) dispersion of light (c) scattering of light (d) convergence of light ray (28) A solution reacts with marble chips to produce a gas which turns lime water milky. The solution contains: (a) Na_2SO_4 (b) $CaSO_4$ (c) H_2SO_4 (d) K_2SO_4 **BIOLOGY** (29) In photosynthesis (a) CO_2 is reduced while H_2O oxidized (b) CO_2 is oxidized white H_2O reduced (c) CO_2 and H_2O are oxidized (d) $CO_2 \& H_2O$ are reduced In which form is food transported in plants (30) (d) Lactose (a) Sucrose (b) Fructose (c) Glucose Growth in a plant is because of (31) (a) More anabolism than catabolism (b) More catabolism than anabolism (c) Equal amount of anabolism and catabolism (d) More energy consumption (32) Special excretory organ is lacking in: (a) Earthworm (b) Amoeba (c) Man (d) Insects In which part of the alimentary canal food is finally digested? (33) (a) Stomach (b) Mouth cavity (c) Large intestine (d) Small intestine A few drops of iodine solution were added to rice water. The solution (34) turned blue-black in colour. This indicates that rice water contains (a) complex proteins (b) simple proteins (c) fats (d) starch Dwarfism results due to (35) (a) Excess secretion of thyroxin (b) Less secretion of growth hormone (c) Less secretion of adrenaline (d) Excess secretion of growth hormone The substance that triggers fall (36) the of mature leaves and fruits from plants is due to (a) auxin (c) abscisic acid (d) cytokinin (b) gibberellin Select the mis-matched pair (37) (a) Adrenaline : Pituitary gland (b) Testosterone: Testes (d) Thyroxin : Thyroid gland (c) Estrogen : Ovary Page | 5

- (38) The ability of a cell to divide into several cells during reproduction in Plasmodium is called
 - (a) budding

- (b) reduction division
- (c) binary fission (d) multiple fission
- (39) The number of chromosomes in parents and offsprings of a particular species remains constant due to
 - (a) doubling of chromosomes after zygote formation
 - (b) halving of chromosomes during gamete formation
 - (c) doubling of chromosomes after gamete formation
 - (d) halving of chromosomes after gamete formation
- (40) In Figure below, the parts A, B and C are sequentially

(a) cotyledon, plumule and radicle (b) plumule, radicle and cotyledon

- (c) plumule, cotyledon and radicle (d) radicle, cotyledon and plumule
- (41) In Rhizopus, tubular thread-like structures bearing sporangia at their tips are called
 (a) filamenta
 (b) hyphag
 (c) rhizoida
 (d) roota
 - (a) filaments(b) hyphae(c) rhizoids(d) roots(d) roots
- (42) The white matter in a bird's dropping is (a) $CaCO_3$ (b) $CaSO_4$ (c) Uric acid (d) Urea

MATHEMATICS

For some integer m, every even integer is of the form				
(a) m (b) m + 1	(c) 2m	(d) 2m + 1	
The product of a non-zero rational and an irrational number is				
(a) always irrational		(b) always ration	al	
(c) rational or irratio	nal	(d) one	/	
If the zeroes of the quadratic polynomial $x^2 + (a + 1) x + b$ and 2 and -3, then			B, then	
(a) $a = -7$, $b = -1$ (b) $a = 5$, $b = -1$ (c) $a = 2$, $b = -6$ (d) $a = 0$, $b = -6$				5
(a) 1 (b) 2	(c) 3	(d) more than 3	6
The pair of equations $x + 2y + 5 = 0$ and $-3x + 6y + 1 = 0$ have				
(a) a unique solution (b) exactly two solutions				
(c) infinitely many solutions (d) no solution				
If a pair of linear equations is consistent, then the lines will be				
(a) parallel (b) always coincident				
(c) intersecting or coincident (d) always intersecting				
Which of the following is not a quadratic equation?				
(a) $2(x-1)^2 = 4x^2 - 2x + 1$ (b) $2x - x^2 = x^2 + 5$				
(c) $(\sqrt{2}x + \sqrt{3})^2 + x^2 =$	$3x^2 - 5x$	(d) $(x^2 + 2x)^2 = x^2$	$^{4} + 3 + 4x^{3}$	
				Page 6
	(a) m (b) The product of a non- (a) always irrational (c) rational or irrational (c) rational or irrational (c) rational or irrational (c) rational or irrational (a) $a = -7$, $b = -1$ (b) The number of polymer (a) 1 (b) The pair of equational (a) a unique solutional (c) infinitely many solutional (c) infinitely many solutional (c) infinitely many solutional (c) intersecting or con- Which of the following (a) $2(x-1)^2 = 4x^2 - 2$	(a) m (b) m + 1 The product of a non-zero rational a (a) always irrational (c) rational or irrational If the zeroes of the quadratic polynomic (a) $a = -7$, $b = -1$ (b) $a = 5$, $b = -1$ The number of polynomials having (a) 1 (b) 2 The pair of equations $x + 2y + 5 = 0$ (a) a unique solution (c) infinitely many solutions If a pair of linear equations is consi (a) parallel (c) intersecting or coincident Which of the following is not a quadratic (c) $a = -7$, $b = -1$ (b) $a = 5$, $b = -1$ (c) $a = -7$, $b = -1$ (b) $a = 5$, $b = -1$ (c) $a = -7$, $b = -1$ (b) $a = 5$, $b = -1$ (c) $a = -7$, $b = -1$ (b) $a = 5$, $b = -1$ (c) $a = -7$, $b = -1$ (b) $a = 5$, $b = -1$ (c) $a = -7$, $b = -1$ (b) $a = 5$, $b = -1$ (c) $a = -7$, $b = -1$ (b) $a = 5$, $b = -1$ (c) $a = -7$, $b = -1$ (b) $a = 5$, $b = -1$ (c) $a = -7$, $b = -1$ (b) $a = 5$, $b = -1$ (c) $a = -7$, $b = -1$ (b) $a = 5$, $b = -1$ (c) $a = -7$, $b = -1$ (b) $a = -7$, $b = -1$ (c) $a = -7$, $b = -1$ (c) $a = -7$, $b = -1$ (c) $a = -7$, $b = -1$ (c) $a = -7$, $b = -1$ (c) $a = -7$, $b = -1$ (c) $a = -7$, $b = -1$ (c) $a = -7$, $b = -1$ (c) $a = -7$, $b = -1$ (c) $a = -7$, $b = -1$ (c) $a = -7$, $b = -1$ (c) $a = -7$, $b = -1$ (c) $a = -7$, $b = -1$ (c) $a = -7$, $b = -1$ (c) $a = -7$, $b = -7$, $b = -1$ (c) $a = -7$, $b = -7$,	(a) m (b) m + 1 (c) 2m The product of a non-zero rational and an irrational m (a) always irrational (b) always ration (c) rational or irrational (d) one If the zeroes of the quadratic polynomial $x^2 + (a + 1) x$ (a) $a = -7$, $b = -1$ (b) $a = 5$, $b = -1$ (c) $a = 2$, $b = -6$ The number of polynomials having zeroes as -2 and 3 (a) 1 (b) 2 (c) 3 The pair of equations $x + 2y + 5 = 0$ and $-3x + 6y + 1$ (a) a unique solution (b) exactly two set (c) infinitely many solutions (d) no solution If a pair of linear equations is consistent, then the line (a) parallel (b) always coincid (c) intersecting or coincident (d) always interset Which of the following is not a quadratic equation? (a) $2(x-1)^2 = 4x^2 - 2x + 1$ (b) $2x - x^2 = x^2 + 1$	(a) m (b) m + 1 (c) 2m (d) 2m + 1 The product of a non-zero rational and an irrational number is (a) always irrational (b) always rational (c) rational or irrational (d) one If the zeroes of the quadratic polynomial $x^2 + (a + 1) x + b$ and 2 and -3 (a) $a = -7$, $b = -1$ (b) $a = 5$, $b = -1$ (c) $a = 2$, $b = -6$ (d) $a = 0$, $b = -6$ The number of polynomials having zeroes as -2 and 5 is (a) 1 (b) 2 (c) 3 (d) more than 3 The pair of equations $x + 2y + 5 = 0$ and $-3x + 6y + 1 = 0$ have (a) a unique solution (b) exactly two solutions (c) infinitely many solutions (d) no solution If a pair of linear equations is consistent, then the lines will be (a) parallel (b) always coincident (c) intersecting or coincident (d) always intersecting Which of the following is not a quadratic equation? (a) $2(x-1)^2 = 4x^2 - 2x + 1$ (b) $2x - x^2 = x^2 + 5$

(50)	The quadratic equation $2x^2 - \sqrt{5}x + 1 = 0$ has					
	(a) two distinct real roots	(b) two equal real roots				
	(c) no real roots	(d) more than 2 real roots				
		01 11 1				

- (51) In an AP, if a = 3.5, d = 0, n = 101, then a_n will be (a) 0 (b) 3.5 (c) 103.5 (d) 104.5
- (52) The 21st term of the AP whose first two terms are -3 and 4 is (a) 17 (b) 137 (c) 143 (d) -143

(53) In $\triangle ABC \sim \triangle EDF$ and $\triangle ABC$ is not similar to $\triangle DEF$, then which of the following is not true?

- (a) $BC \cdot EF = AC \cdot FD$ (b) $AB \cdot EF = AC \cdot DE$
- (c) $BC \cdot DE = AB \cdot EF$ (d) $BC \cdot DE = AB \cdot FD$
- (54) In Fig., two line segments AC and BD intersect each other at point P such that PA = 6 cm, PB = 3 cm, PC = 2.5 cm, PD = 5 cm, ∠APB = 50° and ∠CDP = 30°. Then, ∠PBA is equal to

Frequency 13 10 15 8 11	Consider the following frequency distribution:Class0-56-1112-1718-2324-29					

(b) 17.5

(a) 17

(d) 18.5

Page | 7

201, Rajpath Complex, Vasna - Bhayli Main Rd, Near Bright Day School, Opp Essar Petrol Pump, Vadodara - 391 410 | **8780755750, 8780753078** www.infinityscholarshub.com

(c) 18

(60)	In the formula	$\overline{\mathbf{x}} = \mathbf{a} + \frac{\sum f_i \mathbf{d}_i}{\sum f_i}$, for	r finding the mea	an of grouped data d_i 's are	
	deviations from a	ı of			
	(a) lower limits of	the classes	(b) upper limits o	of the classes	
	(c) mid points of	the classes	(d) frequencies of	f the class marks	
(61)	The probability of	of getting a bad eg	gg in a lot of 400	is 0.035. The number of bad	
	eggs in the lot is				
	(a) 7	()	(c) 21	(d) 28	
(62)				ng tickets numbered 1 to 40.	
		•		which is a multiple of 5 is	
	(a) $\frac{1}{\pi}$	(b) $\frac{3}{5}$	(c) $\frac{4}{\pi}$	(d) $\frac{1}{3}$	
	0	0	0	3	
(63)	If $\sqrt{2} = 1.4142$, th	en $\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}$ is equa	l to		
			(c) 0.4142	(d) 0.1718	
(64)				ts in the negative direction of	
	y-axis is				
	(a) (0, 5)	(b) (5, 0)	(c) (0, -5)	(d) (-5, 0)	
(65)	The point of the	form (<i>a</i> , – <i>a</i>) always	lies on the line (c) y = x		
			(c) $y = x$	(d) $x + y = 0$	
(66)	Zero of the zero p	olynomial is			
	(a) 0		(b) 1		
	(c) Any real num		(d) Not defined		
(67)			FD and $\angle A = \angle$	D. The two triangles will be	
	congruent by SAS		(c) AC = FF	(d) $BC = DF$	
(68)	ABCD is a rhome	(0) AC = DE	(c) AC = EF $B = 40^{\circ}$. Then $\angle AI$	(a) BC = DE	
(03)	(a) 40°	(b) 45°	(c) 50°	(d) 60°	
(69)	· · /	= 40°, then $\angle ACB$			
()			c	iotal S	
			\frown		
		À	B		
	(a) 50°	(b) 40°	(c) 60°	(d) 70°	
(70)		()	. ,	20 cm) that can be stored in a	
(10)	-	alles of differencesion 1 long, 12 m wide a	•	20 cm mai can be stored in a	
	(a) 1900	(b) 1920	(c) 1800	(d) 1840	
		(-)	··/	· /	

201, Rajpath Complex, Vasna - Bhayli Main Rd, Near Bright Day School, Opp Essar Petrol Pump, Vadodara - 391 410 | **8780755750, 8780753078** www.infinityscholarshub.com

Page | 8

MENTAL ABILITY

	MENTAL ABILITY						
(71)	2, 4, 4, 8, 16, 16	, 256, ?					
	(a) 64	(b) 36	(c) 180	(d) 32			
(72)	19, 4, 14, 7, 10,	11, 7, ?					
	(a) 16	(b) 15	(c) 17	(d) 23			
(73)	Each of the follow	wing questions is t	based on the follow	ving alphabet series. A B C D			
	EFGHIJKLN	INOPQRSTU	VWXYZ				
	Which letter is ex	actly midway betw	een H and S in the	e given alphabet?			
	(a) No such letter	(b) L	(c) M	(d) O			
(74)	Arrange the given	n words in the sequ	aence in which the	ey occur in the dictionary and			
	then choose the	correct sequence.					
	1. Wrinkle 2. Wri	ggle 3. Writhe 4. W	/retch 5. Wrath				
	(a) 4, 5, 1, 2, 3	(b) 5, 4, 2, 1, 3	(c) 4, 2, 5, 1, 3	(d) 5, 2, 1, 3, 4			
(75)	In a certain code	BOOK is TLLC and	1 TRICK is NAGDC	, then BRICK is coded as –			
	(a) NAGDC	(b) TAGLC	(c) TALCD	(d) TAGDC			
(76)	If COME is code	as BNLD then DAN	GER will be coded	as			
	(a) EBOHIS	(b) CZMGER	(c) CZMFDQ	(d) DANFDQ			
(77)	In a queue, A is	eighteenth from th	e front while B is	sixteenth from the back. If C			
	is twentieth from	the front and is e	xactly in the middl	e of A and B, then how many			
	persons are there	e is the queue?					
	(a) 45	(b) 46	(c) 47	(d) 48			
(78)	In a row of 21 gi	rls, when monika v	was shifted by four	r place towards the right, she			
	became 12 th from the left end. What was her earlier position from the right end of						
	the row ?		()				
	(a) 9th	(b) 10th	(c) 11th	(d) 14th			
(79)	-			ng same rules are given. Find			
	the rule and accordingly find the value of the number If 43 = 158; 35 = 824; 42 = 153; then 32 = ?						
(80)	(a) 84	(b) 83	(c) 85	(d) 94			
(80)							
	the rule and accordingly find the value of the number If 73 = 52; 95 = 86; 34 = 13, then 57 = ?						
	(a) 30	(b) 57	(c) 40	(d) 32			
(81)	()		()	table in the same order, for			
(81)			•				
	group discussion at equal distance. Their positions are clockwise. If V sits in the north, then what will be the position of S?						
	(a) East	(b) South-east	(c) South	(d) South-west			
(82)							
(54)) If all the directions are rotated, i.e., if North is changed to West and East to North and so on, then what will come in place of North-West ?						
	(a) South-West	(b) North-East	(c) East-North	(d) East-West			
	(a) bouth west (b) north-bast (c) bast-north (a) bast-west						

201, Rajpath Complex, Vasna - Bhayli Main Rd, Near Bright Day School, Opp Essar Petrol Pump, Vadodara - 391 410 | **8780755750, 8780753078** www.infinityscholarshub.com

Page | 9

(83) Find the missing number in the following sets of number around the circle from the choice given below :

(a) 18

(84) Choose the correct mirror-image of the Fig. (X) from amongst the four alternatives (a), (b), (c) and (d) given along with it.

Class VIII, IX & X **Foundation Program NTSE / Olympiads**

Class XI & XII Classroom Program

JEE GUJCET BITSAT (Engineering Entrance) (Medical Entrance)

NEET

201, Rajpath Complex Vasna - Bhayali Main Road Nr. Bright Day School, Vadodara

www.infinityscholarshub.com

Page | 11